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Abstract. Convolutional Neural Networks are the dominant approach for
solving the image segmentation problem. However, they demand significant
amounts of manually labeled data for training and suffer from lacking
explainability. As an alternative, Convolutional Decision Trees take advantage of
the interpretability and simplicity of decision tree models. Nevertheless, choosing
between equivalent trees is a challenging task, given the trade-off between the
model’s precision and complexity. In this work, we propose using Differential
Evolution as a global search metaheuristic for the induction of Convolutional
Decision Trees applied to the image segmentation problem. Various tests were
conducted on the Weizmann Horse dataset, where the elevated computational
cost of determining the individuals’ fitness value limited the search. Nonetheless,
short and explainable models were induced with promising results for some parts
of the dataset. In this way, Differential Evolution appears as an attractive tool for
Convolutional Decision Trees induction, expecting future improvements.

Keywords: Convolution, decision trees, differential evolution,
image segmentation.

1 Introduction

The image segmentation problem consists of assigning a semantic label to the pixels
in an image. Differentiating an object from the image’s background is essential in most
image analysis systems. Thus, various image segmentation methods have been proposed
in the literature [7]. However, in recent years, the high performance of Convolutional
Neural Networks (CNN) as a Deep Learning technique has been proclaimed the
dominant paradigm in computer vision [12].

Therefore, various approaches using CNN have been studied for the image
segmentation problem, as shown in [3]. Despite the high-performance results reached
by CNN in different tasks, they suffer from requiring lots of labeled data for training.
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Additionally, CNN faces the difficulty of high training time, making some
applications unsuitable for their use or demanding a specific hardware infrastructure
[8]. Consequently, some challenges remain for CNN, such as their explainability,
the efficient use of memory, and the speed to process a new instance on a
real-time application [12].

Decision Trees (DT) are a classification model characterized by their simplicity
and interpretability where internal nodes represent the test conditions and leaf nodes
are the class labels. Nonetheless, the DT induction classic process uses a greedy
recursive partitioning heuristic that suffers from adaptability in some applications.
Alternatively, various approaches to using metaheuristics for decision tree induction
have been proposed in the literature [15].

Convolutional Decision Trees (CDT) were proposed in [8] for image segmentation
and feature learning problems, performing well and using a fraction of the time needed
for training a CNN without a particular hardware configuration. This approach was
tested on the Weizmann Horse dataset [2], obtaining an F1-score of 80.4% with a
tree depth of 18. However, results showed that trees with short depths have less
adequate performance.

Three main metaheuristic-guided DT induction strategies are described in [11].
The first consists of a recursive partition strategy where the metaheuristic finds a
near-optimal partition. The second strategy uses the metaheuristic as a global search
technique that looks for the complete model of a near-optimal DT.

An essential challenge in this approach is maintaining diversity in the population.
Besides, the computational cost of the fitness value calculation increases considerably
with high-dimension datasets. Finally, the third strategy uses a previously induced DT
and continually optimizes it according to the metaheuristic.

A population-based metaheuristic used in literature for the induction of near-optimal
DT is the Differential Evolution (DE) algorithm [15]. DE is one of the most popular
metaheuristic search strategies and has been applied successfully for solving several
optimization problems. Furthermore, DE is prominent in the algorithm simplicity where
few parameters control the search process [6].

Two ways of using DE in DT induction are shown in [10, 15]. Perceptron Decision
Trees incorporate a linear combination test condition on each internal node. DE is used
to evolve the values of the tree’s structure [10]. In [15], the DE-ADTSPV method uses
DE as a global search strategy to find near-optimal parallel-axis DT coding the trees as
real-value vectors.

Both works achieved decent results in the classification accuracy obtained by their
resulting models. The use of DE in two different strategies for the induction of oblique
decision trees is studied in [16]. The first is OC1-DE, where a recursive partition
strategy is used with DE to find near-optimal partitions for each tree node. The second
method is DE-ODT, which uses a global search strategy to find a near-optimal oblique
decision tree.

The solutions representation corresponds to a real-value vector that codes the
internal values of a tree. The length of the vector depends on the number of attributes
given and the predefined depth of the tree. Both methods described showed their
effectiveness in decision tree induction.
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Based on the literature, it is seen that DE has been used in various DT induction
processes. Nevertheless, to the best of our knowledge, DE has not been applied for the
particular CDT induction case. Therefore, this paper uses DE as a global search strategy
to induce CDT. Consequently, DT and DE characteristics were employed to construct
an explainable model for the image segmentation problem.

The remaining structure of this document is divided into four sections. Section 2
includes the DE algorithm description. Implementation details are defined in section 3,
whereas section 4 explains the experimentation and the results obtained during tests.
Finally, section 5 contains the conclusions and suggested future work.

2 Differential Evolution (DE)

Differential Evolution (DE) is a population-based evolutionary algorithm for
optimization of complex problems [13]. DE mainly works with real-valued vectors
representing potential solutions to the problem. However, DE is also applied in the
discrete and combinatory domain [14].

The basic strategy of DE is called DE/rand/1/bin [16, 1, 5]. The general DE
procedure generates a trial vector for every individual xi or target vector in the
population. The first step consist of generating a noise vector using Equation 1 where r0,
r1 and r2 are individuals randomly selected from the population and F is a user-defined
scale factor:

vi = r0 + F (r1 − r2). (1)

Once vi is computed, the trial vector is generated stochastically. Equation 2
expresses this process. If a random number (randj) is lower than a Crossing Rate (CR)
defined by the user or the position (j) corresponds to one previously determined by
chance, the component takes the value from vi. Otherwise, it takes the value from xi:

ui,j =

{
vi,j if (randj ≤ CR) or (j = Jrand); j = 1, ..., |xi|,
xi,j otherwise.

(2)

Finally, the next step is determining which vector will be part of the next generation
population. A binary tournament between trial and target takes place where the one
with the better fitness value is chosen [16]. This selection method works as an elitism
mechanism by always keeping the best individual in the population.

Another DE variant is called DE/best/1/bin, where the main difference is in the
computation of vi. Instead of choosing a random individual as r0, the individual in the
population with the highest fitness value is chosen [6].

3 Proposal Implementation

This work proposes an analysis of the DE effectiveness for CDT induction. The
procedure implemented is based on the DE-ODT algorithm for oblique decision tree
induction proposed in [16], where the values of each node are represented in a vector
that is evolved.
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Fig. 1. Codification of a Convolutional Decision Tree internal convolution kernels and how a
pixel-associated instance is processed.

In this proposal, the values coded in the vector represent internal convolution kernels
for the tree. To determine which tree branch to take while classifying a dataset instance,
we propose using a perceptron-like structure similar to [10]. The product between the
instance values and the weights of a convolution kernel passes through an activation
function returning a 0 or 1 label.

Based on that label, the tree node where the instance needs to go is decided. This
procedure is repeated until a leaf node is reached, then a label is assigned to the instance.
Figure 1 illustrates the proposal. DE/rand/1/bin and DE/best/1/bin are the two DE
variants used in this work. Both versions need user-defined parameters such as scale
factor F, crossing rate CR, population size, and how many generations will run the
algorithm. Moreover, two additional parameters of the tree structure are required for
this application: kernel size and tree depth.

3.1 Images Preprocessing

The images used for the tree induction procedure are preprocessed to obtain a vector
associated with each pixel. Then, according to [10], pixels are coded as a vector of
values given by the neighbor pixels. The vector length depends on the kernel size
defined by the user. Additionally, a value of 1 is included in every instance to operate
with the bias value of the proposed perceptron-like structure.

3.2 Coding Potential Solutions

A population’s individual represents a solution consisting of a real-valued vector with
the values of convolution kernels associated with the tree’s internal nodes. The amount
of weights needed by each kernel depends on kernel size (s× s). Therefore, the weight
amount is computed as s2+1 where s is the kernel side length, and the one corresponds
to the bias value.

Another aspect to be considered when a solution is coded is the number of kernels
needed in the tree. This value depends entirely on tree depth and is determined by 2d−1,
where d is the depth defined by the user. Figure 2 shows an example of this codification.
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Fig. 2. Coding of pixel-associated instances and convolution kernels.

3.3 Fitness Value

The fitness value of each individual is determined by the F1-score metric based on the
precision and recall metrics. To calculate this value, we need to compute the labels
assigned to the training instances by the tree coded in each individual of the population
and compare them with the actual labels of the instances. The resulting fitness value is
between 0 and 1, and we try to maximize it using DE.

The initial population is generated with fixed length vectors of randomly chosen
values from a uniform distribution with limits -255 and 255. After that, individuals
are evaluated to compute their fitness value, and the DE procedure starts. Additionally,
the Mean Point Distance metric [?] is used in every generation to measure diversity in
the population.

3.4 Repair Operator

A repair operator is used to restrain the search space and keep the values of the tree
between -255 and 255. While computing the vi vector, if a value exceeds one of the
limits imposed, a new value is calculated as two times the exceeded limit (-255 or 255)
minus the value that infringed the restriction.

4 Experiments and Results

A single user-defined image was used to create short training and test sets as a controlled
algorithm initial test. Then, a first algorithm parameters calibration was done, obtaining
favorable results in pattern detection. These results identified that higher values of
population size and the number of generations resulted in more suitable individuals
at the end of the search. Nonetheless, both have a direct impact on the procedure’s
computational cost. After the initial tests, we executed 13 extended tests using the
Weizmann Horse Dataset [2], which consists of 328 manually segmented horses images,
allowing us to compare our results with the ones described in [8].

An image resizing procedure was applied to reduce the number of pixel-associated
instances processed in the tree induction process. Moreover, multiple tests were
conducted varying some algorithm parameters. In addition, population size and
generation number values were adjusted to make each test last less than 24 hours.
Finally, CR and F parameters were maintained at 0.9 in all executions.
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Table 1. Tests of the proposed method for Convolutional Decision Trees induction.

Test DE-var Training Popsize Generations Depth F1-score Accuracy Time(hrs)
1 Rand 2/3 40 59 3 0.4296 0.6277 22.31
2 Rand 2/3 40 59 3 0.4421 0.6770 21.21
3 Rand 2/3 40 59 3 0.4671 0.5925 21.73
4 Best 2/3 40 60 3 0.4480 0.6546 18.65
5 Best 2/3 40 60 3 0.4465 0.6473 16.75
6 Best 2/3 40 60 3 0.4730 0.6877 18.32
7 Best 1/3 46 100 3 0.4513 0.6549 21.92
8 Best 1/10 80 200 3 0.4882 0.6798 23.17
9 Best 2/10 60 120 3 0.4819 0.6846 19.76
10 Best 2/10 50 100 5 0.4531 0.6025 16.72
11 Best 1/10 60 110 7 0.4696 0.6827 21.07
12 Best 1/20 50 130 13 0.4367 0.6504 16.32
13 Best 1/25 40 100 17 0.4255 0.5881 22.22

In the first six tests, the fraction of training data was maintained with similar
population size, generation number, and a tree depth value of three. Also, the two
DE versions previously mentioned in the document were employed. The main obstacle
found was the time required for each test. Hence, the selected values of population size
and the number of generations were limited.

After that, we tried different configurations of training set size to decrease the time
consumed by the induction process, allowing us to increase parameters like the tree
depth. Without reducing the training set, the resources and time demanded would have
impeded testing deeper tree models. Table 1 shows our proposal’s results under the
above-mentioned considerations.

This table shows that DE/best/1/bin got better results and was faster than
DE/rand/1/bin when tested in similar conditions. As a consequence, this DE variant was
used during the remaining tests. Training set reduction did not significantly decrease the
method’s performance showing the model’s capacity for generalization even though the
induction process takes place with small amounts of data.

Test 8 resulting model got the highest F1-score while using only 10% of the data
for training. More complex models did not imply better results in our tests, but the
induction used even more reduced fractions of the dataset. Figure 3(a) presents the tree
induced in test 9, whereas Figure 3(b) shows a comparison of the actual mask and the
predicted mask of 12 test images from the same test.

We noticed that the model struggles with background and foreground textures, while
horses’ contour is detected in most images. In none of the test cases we achieved
similar results to the 80.4% of F1-score obtained in [8] where their method for CDT
induction takes 12 hours for training. Nevertheless, our results are comparable for
short-depth trees.
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Fig. 3. (a) Tree induced in test 9. (b) A sample of the segmentation results obtained by the tree
showed in (a). The letter R is used to identify the real segmented masks, and the letter P is for the
predicted ones.

5 Conclusions and Future Work

In this work, a method for CDT induction with DE is proposed and compared with
the original method proposed in [8]. The main difference is using a population-based
metaheuristic to induce several trees instead of only one with a recursive partition
strategy. Applying DE for the CDT induction faces the computational time
problem when evaluating the capacity to classify the training instances by the
population’s individuals.

This classification ability is the fitness function of DE. Moreover, this task increases
resource demand as the number of training instances is augmented. When an image
dataset is used, the amount of pixel-associated instances is quite considerable, in the
order of millions, making the labor of the model induction more complex.

In conclusion, we suffer from the search limits imposed by the computational cost
required by the induction process in our proposal. This situation forced us to use
less adequate parameters for the DE algorithm and reduce the training data fraction.
However, DE was still capable of inducing short and explainable models. Given this,
one thing to highlight is the method’s capability to train with little data without
additional processes to augment the training set.

For the model’s explainability, one could successively apply convolutional
operations to an image following the tree structure and analyze the results for each
branch and leaf node. Nevertheless, deeper tree models reduce explainability, given the
elevated model’s number of branches and kernels.

In order to make the proposed procedure proficient, it is necessary to overcome the
challenge of the computational cost of evaluating an individual. Without accomplishing
this, the capabilities of using DE as a global search tool would still be limited for
this type of problem. Future work could include trying a self-adapted DE scheme and
exploring different parameter values for kernel size and tree depth.
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Additionally, some improvements could be implementing techniques like
windowing [9] to reduce the number of training instances and methods like pruning to
enhance the resulting trees. For future reference, it is necessary to compare the proposal
performance with diverse approaches for image segmentation, such as U-Net and other
Convolutional Neural Networks methods [3].
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